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Figure 1: An example interaction with Walkie-Talkie v1 in VR. A user asks “What’s the healthiest among these?” as they shift
their gaze to look at different items on the shelf, including beer, Coca-Cola, water, and Sprite. An LLM receives a 30-seconds
gaze log, word utterance timing, and the user’s original query as part of a hard-prompt. The answer is read aloud.

Abstract
Everyday conversations are often ambiguous, which we resolve
using nonverbal cues like gaze and pointing. To enable such low-
effort interactions with voice assistants (VAs), we explore how large
language models (LLMs) and vision-language models (VLMs) can
leverage longitudinal natural gaze signals. We introduce Walkie-
Talkie, a multimodal VA for extended reality (XR) that uses gaze
dynamics to disambiguate queries. Through iterative design, our
system transforms gaze data—capturing targets, duration, and spa-
tial relationships—into text and/or image for LLM and VLM pro-
cessing alongside spoken word timing. In a controlled VR study
(N=12), Walkie-Talkie outperformed a baseline requiring explicit
gaze input, and subsequent AR evaluations explored its real-world
feasibility. Our findings highlight the potential of multimodal foun-
dation models for natural, accurate gaze and speech interactions
in wearable XR. We conclude by discussing future directions for
designing always-available, context-aware AI agents in XR glasses.
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1 Introduction & Background
Everyday conversations are filled with ambiguities—like saying
to a friend, “I really like that, where and how much did you buy it
for?”—which we resolve naturally using nonverbal cues such as
eye gaze and pointing [2, 6, 10]. To replicate these interactions in
machines, recent work has leveraged advances in extended reality
(XR), computer vision (CV), and multimodal foundation models to
develop context-aware voice assistant (VA) prototypes, including
WorldGaze [24], Nimble [33], TouchVA [18], GazePointAR [19], and
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G-VOILA [37]. While promising, these systems remain proof-of-
concept prototypes, relying on controlled evaluations and explicit
gaze dwell, limiting their use in natural, spontaneous interactions.

Explicit gaze input, while effective for tasks like object target-
ing [31], poses challenges for question-answering, including the
midas touch problem and user fatigue, as users must consciously
control their gaze against natural tendencies. In contrast, natural
gaze dynamics offer significant benefits, as gaze behavior reflects
cognitive processes like attention [30] and decision-making [13].
Additionally, gaze over time enables ambiguous queries referenc-
ing objects or events in the recent past (e.g., “Which is healthier,
this or that?” or “What was that?”) and even the distant past (e.g.,
“Where did I leave my keys?”). While prior systems have focused on
explicit gaze input and present referents (e.g., “What is this?”), we
emphasize supporting queries tied to both the present and recent
past through low-effort, natural gaze interactions.

We present Walkie-Talkie, a context-aware VA that leverages
longitudinal natural eye gaze, large language models (LLMs), and
vision-language models (VLMs) for query disambiguation in XR
environments. Unlike prior research, Walkie-Talkie captures gaze
signals over time, recognizing intent without requiring users to
alter their typical gaze behavior. The first iteration,Walkie-Talkie
v1, integrates a GPT-4 [27] LLM, transforming raw gaze and speech
data into structured text by encoding 30 seconds of gaze history (e.g.,
“gazed at apple for 0.4 seconds (nearby objects: melon, kiwi)”), spoken
word timing (e.g., “said ‘this’ 0.2 seconds ago”), and the query itself
into a hard prompt for processing (Figure 2). With Walkie-Talkie
v1, our goal is to explore LLMs’ potential to interpret lower-level
multimodal human data.

To evaluate Walkie-Talkie, we first deployed it on a Meta Quest
Pro virtual reality (VR) headset to assess its natural interactions and
query disambiguation accuracy compared to explicit gaze input sys-
tems, without confounds such as CV performance or system latency.
In a within-subjects, two-part lab study (N=12), participants com-
pleted free-form queries (Part 1) and researcher-defined tasks (Part
2), comparing Walkie-Talkie to a custom baseline system modeled
after prior work that relied on explicit gaze input. Results showed a
strong preference for Walkie-Talkie due to its fluid gaze interaction
(e.g., participants exhibited fewer fixations and more saccades) and
effective query disambiguation, particularly for complex queries
involving multiple, small, or distant referents.

Expanding beyond controlled VR environments, we adapted
Walkie-Talkie for the Microsoft HoloLens 2 augmented reality (AR)
glasses to assess its real-world performance. This included two
iterations: Walkie-Talkie v2, which replicated the VR setup using
YOLO-World [8], an open-vocabulary object detector, alongside a
GPT-4o LLM [28]; andWalkie-Talkie v3, which integrated RepViT-
SAM [36], a fast Segment Anything Model (SAM) [16], with point
input (i.e., projected gaze coordinates) and a GPT-4o VLM [28]. Af-
ter identifying CV limitations in Walkie-Talkie v2, we improved
Walkie-Talkie v3 by incorporating a mosaic of stitched gaze-driven
crops for better gaze target classification. Then, five participants
tested it across three real-world environments (i.e., grocery store,
library, and home), providing qualitative feedback. We found that
this approach enables accurate, lightweight referent identification,
though some misclassifications remained. We conclude by envision-
ing future always-available AI agents in wearable XR.

In summary, our key contributions include:
(1) An exploration of multimodal foundation models for process-

ing longitudinal gaze data, showcasing prompt-based and
image-based approaches to understanding gaze dynamics.

(2) Walkie-Talkie, a context-aware VA for XR headsets, leverag-
ing natural gaze for low-effort query disambiguation.

(3) Insights from VR and AR evaluations, including a two-part
lab study and real-world deployment, revealing challenges
and opportunities for gaze- and AI-driven XR systems.

2 The Design of Walkie-Talkie
Walkie-Talkie is a novel context-aware multimodal voice assistant
(VA) for wearable XR that leverages gaze and speech over time.
With Walkie-Talkie, our goal is to enable users to gaze naturally
at their surroundings and ask ambiguous queries instinctively. For
example, a user might scan items on a shelf and ask, “Which is
the healthiest?”, allowing Walkie-Talkie to infer context from their
everyday gaze and speech behavior. In its first iteration, Walkie-
Talkie v1, we encode gaze and speech features into text and integrate
them into a hard prompt for LLM processing.We builtWalkie-Talkie
v1 in Unity 2021.3.15f11 using the Meta XR SDK2, with the Meta
Quest Pro’s built-in eye tracker enabling rapid prototyping. Figure 2
provides an overview of the system architecture.

System Activation. Since the Quest Pro lacks voice activation,
participants initiated queries by saying “Hey glass”, after which the
researcher activatedWalkie-Talkie via a laptop key press, simulating
state-of-the-art VAs (e.g., Apple Siri).

Gaze and Speech Capture. The Quest Pro’s eye tracker (1.652±
0.699 degrees error [38]) continuously logged users’ natural gaze
behavior, storing the most recent 30 seconds of fixations over
50ms [17] (e.g., “Gazed at apple for 0.4 seconds”), as well as saccades
or unfixated gazes (e.g., “Gazed at nothing for 0.6 seconds”). This
structure emphasizes key spatiotemporal features—gaze duration,
target, and order [29]—for LLM interpretation. Then, to account for
gaze tracking inaccuracies, each entry included up to five nearby
objects, ordered by proximity to the tracked gaze position within a
five-degree cone (e.g., “(Nearby objects: melon, kiwi)”). Speech was
transcribed viaWit.ai3, with word utterance timings logged (e.g.,
“Said ‘this’ 0.2 seconds ago”) to help the LLM align speech with gaze.

Data Processing and Query Response. Gaze and speech data
were processed using GPT-4 [27] with a custom-designed hard
prompt (Figure 2). Responses were read aloud via text-to-speech.

3 User Study
We conducted a two-part within-subjects lab study with 12 partic-
ipants to evaluate Walkie-Talkie’s ability to process longitudinal
natural gaze data for query disambiguation, comparing it to a cus-
tom baseline system. The study focused on accuracy (i.e., how well
each system predicted speech referents) and naturalness (i.e., how
well participants could maintain natural gaze behaviors). While
both systems employ a prompt-based approach, the baseline relied
on explicit gaze input through a heuristic method inspired by prior

1https://unity.com
2https://assetstore.unity.com/packages/tools/integration/meta-xr-all-in-one-sdk-
269657
3https://wit.ai
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Figure 2: System overview and hard-prompt design of Walkie-Talkie v1. The system captures users’ natural gaze over time and
compiles a 30-second gaze history, including targets, durations, and nearby objects (e.g., “gazed at apple for 0.4 seconds (nearby
objects: melon, kiwi)”). This is combined with the timing of spoken words (e.g., “said ‘What’ 0.5 seconds ago”) and the query
itself, forming a comprehensive hard prompt sent to an LLM (i.e., GPT-4) for processing.

Figure 3: Components of the controlled VR study: (a) VR grocery store environment, (b) VR home environment, (c) referent-
rating UI panel, where users rated the accuracy of predicted referents for the baseline and Walkie-Talkie simultaneously on a
5-point Likert scale, and (d) answer-rating UI panel, which served a similar purpose but focused on response accuracy.

work [2, 19, 24, 33], capturing gaze data either when a keyword
was spoken (e.g., commonly-spoken pronouns like “this” [20]) or
at the end of the query. The study was conducted in VR to control
conditions and eliminate confounding factors like object recog-
nition errors. Participants (7 female, 5 male, 𝑀𝑒𝑎𝑛𝑎𝑔𝑒=28.8 years,
𝑆𝐷𝑎𝑔𝑒=5.5) had some prior experience with XR, VA, and AI chat
systems, having used each technology a few times but not regularly.

Part 1: Free-Form Queries. Part 1 evaluated Walkie-Talkie and
the baseline system’s ability to predict speech referents for sponta-
neous queries, the quality of their responses, and how participants
formed ambiguous queries. For 15 minutes, participants explored
a VR grocery store (Figure 3a) and posed queries freely, with both
systems generating responses simultaneously. The predicted refer-
ents were first displayed side by side and rated on a 5-point Likert
scale (Figure 3c), followed by the answers (Figure 3d). To reduce
bias and encourage natural gaze behavior, participants were told
only that their gaze was being tracked, with the baseline labeled as
“System A” andWalkie-Talkie as “System B”. Afterward, participants
answered open-ended questions about their experience, perceived
system accuracy, and approaches to gaze and query formulation.

Part 2: Researcher-Defined Tasks. Part 2 evaluated system
usability and the impact of different gaze processing strategies on
participants’ natural gaze behavior, preferences, and system accu-
racy. Participants completed 12 tasks using each system separately
across a VR grocery store (Figure 4a) and home environment (Fig-
ure 4b), with counterbalanced system and environment order. We
designed tasks with varying complexity, ranging from those requir-
ing a single referent to those involving multiple or past referents.
Participants were encouraged to make multiple attempts until sat-
isfied with the system’s answer, allowing them to refine their gaze
behavior. Metrics included 5-point Likert scale ratings for referent
and response accuracy, raw gaze data, and post-task questionnaire
responses using SUS [5] and NASA-TLX [15]. Follow-up interviews
further explored participants’ perceptions of accuracy, naturalness,
and their own gaze behavior across the two systems.

DataAnalysis.Quantitative data were analyzed usingWilcoxon
signed-rank tests for paired comparisons andMann-Whitney U tests
when the number of queries differed between conditions. Qualita-
tive data were analyzed using reflexive thematic analysis [3, 4].
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Figure 4: Example queries asked when completing the 12 researcher-defined scenarios in Part 2 of the VR study.

4 Results
We analyzed data from 593 query attempts—305 spontaneous queries
from Part 1 and at least 288 (2 systems x 12 tasks x 12 participants)
from Part 2. In Part 2, we used all attempts for referent and an-
swer accuracy, as they reflected system performance across retries,
but only the final satisfactory attempt for gaze data, as it captured
participants’ most refined gaze input. Overall, Walkie-Talkie out-
performed the baseline in accuracy, gaze naturalness, and usability.

4.1 Perceived Accuracy
Walkie-Talkie showed significantly higher accuracy than the base-
line in Part 1, both for referent prediction (𝑉 = 73, 𝑝 < 0.001) and
answer accuracy (𝑉 = 588, 𝑝 < 0.001). Similarly, in Part 2, it outper-
formed the baseline in referent prediction (𝑊 = 14, 779, 𝑝 < 0.001)
and answer accuracy (𝑊 = 16, 140, 𝑝 < 0.001). Usability ratings
(SUS) were initially not significant (𝑉 = 16.5, 𝑝 = 0.08), but after
removing outliers, they favored Walkie-Talkie (𝑉 = 5.5, 𝑝 < 0.05).
Cognitive load measures (NASA-TLX) showed no significant dif-
ferences (𝑉 = 51.5, 𝑝 = 0.35), even after outlier removal (𝑉 = 40.5,
𝑝 = 0.53). See Figure 5 for boxplots of all collected metrics.

Participant feedback aligned with these results, with 11 of 12
participants preferring Walkie-Talkie’s accuracy. The baseline spo-
radically returned “unsure” (8/12), missed key referents or failed to
identify any (7/12), and misclassified gaze targets as larger nearby
objects like “shelf ” or “table” (3/12). P9 explained, “My gaze often

drifts, so I may unintentionally look between nearby objects and the
object I actually care about, like the shelf holding the cereal boxes,”
which made it harder for the baseline to capture precise referents,
especially when they were smaller or further away. P11, who pre-
ferred the baseline’s cautious approach, reasoned, “The baseline
system is always right when it says something, though it sometimes
doesn’t say anything... I prefer an AI that is absolutely correct, even if
it responds less often.”

For single-referent queries (e.g., “Is this healthy?”), half of partic-
ipants found little difference between systems, while the other half
preferredWalkie-Talkie for its accuracy. This is because the baseline
sometimes missed intended targets, even when participants tried to
keep their gaze steady, causing some to wonder if they had “moved
[their] eyes too early” (P3). For multi-referent tasks, Walkie-Talkie
was widely preferred, with eight participants praising its ability
to handle complex comparisons (e.g., “Which is healthiest among
these?”). However, five participants noted Walkie-Talkie sometimes
included unintended referents; for example, P2 observed, “When I
asked, ‘Which fruit has the highest vitamin C content?’ Walkie-Talkie
compared six or seven fruits when I really meant just three.”

4.2 Gaze Behavior
In Part 2, we collected and processed raw gaze data to compare
participants’ gaze behavior betweenWalkie-Talkie and the baseline,
following prior work [35]. We first transformed 3D gaze positions
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Figure 5: Box plots comparing the Baseline andWalkie-Talkie systems across all collected quantitative metrics, including Part 1
& 2 referent and answer accuracy, SUS (with and without outliers), NASA-TLX, fixation/saccade counts, fixation/saccade frame
durations, and fixation dispersion. Statistically significant differences are indicated in relevant plots.

Figure 6: 12 examples of free-form queries participants asked in Part 1 of the VR study.

from the eye-in-head reference frame to gaze-in-world using head
orientation data [7]. Gaze velocity was then computed as the an-
gular displacement between consecutive samples divided by the
time interval, with velocities exceeding 800◦/s filtered as noise [11].
Missing data were linearly interpolated. Saccades were detected us-
ing the IN-VTmethod for samples exceeding 70◦ and lasting 17–200
ms [34]. Fixations were identified using the I-DT method, where

time windows with dispersion under 1◦ and durations between
50–1500 ms were labeled as fixations [34].

Quantitative gaze analysis revealed that participants exhibited
more natural gaze behavior with Walkie-Talkie than the baseline
(Figure 5). Fixation durations (i.e., total frames spent fixating) were
significantly shorter (𝑉 = 61.5, 𝑝 < 0.05), and fixation dispersion
(i.e., the average distance between fixation points and the fixation
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Figure 7: 10 example queries the first author asked to Walkie-Talkie v2 in AR.

centroid [12]) was significantly wider (𝑊 = 11, 𝑝 < 0.001), suggest-
ing Walkie-Talkie encouraged more dynamic and exploratory gaze
patterns. Additionally, saccade durations (i.e., total frames spent
saccading) showed a trend toward being longer with Walkie-Talkie
but was not statistically significant (𝑊 = 44, 𝑝 = 0.10). Other met-
rics, including average gaze velocity (𝑊 = 66, 𝑝 = 0.76), fixation
counts (𝑉 = 49.5, 𝑝 = 0.43), and saccade counts (𝑉 = 9.5, 𝑝 = 0.25),
did not differ significantly between conditions. See Figure 5.

Participants described their gaze as more dynamic with Walkie-
Talkie, using terms like “more natural” (P1, P2, P3, P5, P6, P11),
“scanning” (P3, P7, P12), “continuously moving” (P6, P8), “freer” (P3,
P12), “lasso-like looping” (P5, P10), “sweeping” (P11), “gliding” (P10),
“jumping” (P2), and “bouncing” (P1). P8 and P9 mentioned that they
“gave almost no thought into how to look at things” with Walkie-
Talkie, due to its higher accuracy. However, several participants
noted their eye movements were not entirely natural, as they ad-
justed to assist Walkie-Talkie in understanding their intentions
(P3, P4, P12). Some also reiterated concerns about Walkie-Talkie
over-predicting referents, particularly in cluttered scenes.

4.3 Query Formation
Of the 305 free-form queries in Part 1 (see Figure 6 for examples), 238
(78.0%) contained pronouns, with “this” (136/238), “that” (41/238),
and “these” (24/238) being the most common. This aligns with prior
research on the prevalence of pronouns in ambiguous speech [10,
20]. Participants found ambiguous queries, especially those with
pronouns, instinctive and natural. P5 observed they spoke more
concisely to Walkie-Talkie, which consistently tracked their gaze,
compared to people whomight miss context: “I’d just say ‘this cereal’
instead of explaining further, like ‘the cereal down below.’” However,
P12 noted that the system’s lack of personal context sometimes
required more detailed queries: “People are already aware of my
goals, like eating healthy, so I don’t have to say, ‘What’s healthiest
among these?’ to my friends. Instead, I’d say something like ‘what’s
good?’ if we’re at a restaurant trying to order.”

5 System Evaluation in Wearable AR
In our VR study, we demonstrated that multimodal foundation mod-
els, particularly LLMs, show promise in processing longitudinal
natural gaze data to resolve ambiguous queries in controlled con-
ditions. However, in real-world scenarios, factors like latency and
CV limitations can affect Walkie-Talkie’s performance. To assess
its behavior under these constraints, we deployed the system on a
Microsoft HoloLens 2, iterating twice to refine its capabilities. This
evaluation offers insights into designing and deploying context-
aware, always-available AI agents for wearable XR devices.

5.1 Walkie-Talkie v2: LLMs + YOLO-WORLD
The first AR iteration of Walkie-Talkie on the HoloLens 2 (Walkie-
Talkie v2) closely mirrors the Quest Pro implementation (Walkie-
Talkie v1), with additional features inspired by GazePointAR [19].

System Implementation. Walkie-Talkie v2 streams 424x240
@ 30FPS video feed using hl2ss [9] to an external PC running
YOLO-World [8], a real-time open-vocabulary object detector. The
HoloLens’ built-in gaze tracker (1.5–3° error margin [26]) maps
the user’s gaze coordinates to detected objects through projection.
Then, gaze targets and speech data over time are integrated into a
hard prompt for a GPT-4o LLM [28], as in the VR system (Figure 2).
To activate Walkie-Talkie, users say “Hey Glass”4 and the HoloLens
responds, “Hi, I’m listening.” [19]. Speech is converted to text and
word timings via Microsoft Azure’s speech-to-text API [25], while
the gaze log continuously updates at 23.8 FPS. LLM responses are
vocalized with Azure’s text-to-speech API [25].

Preliminary Evaluation. The first author tested Walkie-Talkie
v2 in 10 real-world scenarios, such as comparing fruit prices, find-
ing recipes, and interacting with household items (see Figure 7).
Walkie-Talkie v2 supported fluid eye movements and resolved sev-
eral ambiguous queries but struggled with object detection limita-
tions, including misclassifications (e.g., confusing a white table for

4https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2/
features/input/speech

https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2/features/input/speech
https://learn.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/mrtk2/features/input/speech
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Figure 8: Example gaze mosaic representation of a user’s gaze history in a local grocery store, alongside the updated hard
prompt design of Walkie-Talkie v3.

Figure 9: 10 example queries participants asked to Walkie-Talkie v3 in AR.

a refrigerator) and numerous unrecognized objects. We concluded
that current efficient open-vocabulary object detectors alone may
be insufficient for the complexity of real-world environments.

5.2 Walkie-Talkie v3: VLMs + Gaze Mosaic
While the LLM and open-vocabulary object detector approach
showed promise, it struggled to handle the diversity of objects
in real-world environments. To address this, we explored using
a vision-language model (VLM) to improve Walkie-Talkie’s gaze
target classification capabilities (Walkie-Talkie v3).

System Implementation.We enhancedWalkie-Talkie by incor-
porating a VLM for better open-vocabulary object detection, while
keeping the same user flow as previous versions. To process gaze
data and the video feed efficiently without exceeding token limits,
we implemented a gaze-driven cropping strategy using RepViT-
SAM [36], a lightweight variant of the Segment Anything Model
(SAM) [16]. The user’s projected gaze coordinate is passed as input
to generate polygonal crops from the video stream, which are then
converted to rectangular crops every 0.2 seconds and stored for 15

seconds. When the user speaks, these crops form a chronologically-
ordered 4096×8192 mosaic, with the oldest gaze target in the top
left and the most recent towards the bottom right. If no gaze data
is available—due to lack of fixation (e.g., gaze tracker failure, closed
eyes), SAM failures, or having gazed for less than 15 seconds—black
rectangles may populate parts of the gaze mosaic. This mosaic is in-
tegrated into a hard prompt alongside speech data, including word
utterance timings, and processed by GPT-4o’s vision feature [28]
(Figure 8). Gaze data and the video feed are sent via hl2ss, with
text data transferred using a custom Flask-based TCP solution. The
response is vocalized by the HoloLens.

User Study and Findings. Five participants (PP1–PP5, 3 female,
2 male, 𝑀𝑒𝑎𝑛𝑎𝑔𝑒=27.2 years, 𝑆𝐷𝑎𝑔𝑒=4.1) evaluated Walkie-Talkie
v3 across three environments: grocery store, library, and home.
Participants asked 67 free-form queries in total (Figure 9), and
Walkie-Talkie v3 successfully handled many ambiguous queries
(41/67), demonstrating a significant improvement over the previ-
ous LLM-based approach. The VLM’s ability to align gaze-driven
crops with speech timing was particularly promising, with nearly
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all queries resulting in at least some predicted referents. How-
ever, CV limitations remained: misclassifications, such as “a case of
blueberries” being misidentified as “a blueberry muffin” (PP3) and
“a bag of chips” as “a box of cereal” (PP1), as well as small crops
leading to inaccuracies, like misidentifying a book’s author due to
poor crop resolution (PP4). Additionally, rapid head movements
caused inaccurate or occasional “unsure” responses (PP1, PP2, PP5)
due to blurred crops. Despite these issues, participants were im-
pressed with Walkie-Talkie v3, noting that even in misclassification
instances, predicted referents were reasonable and aligned with
the intended targets (e.g., “a green box” predicted as “a dollar bill”
(PP5)). PP1 was particularly impressed that Walkie-Talkie v3 not
only recognized their referent as an instant noodle but also distin-
guished between different types and brands, correctly answering
their query, “Which of these is the least spicy?” Lastly, participants
felt their gaze was natural; however, like in the VR study, they noted
it was not entirely natural due to awareness of being tracked.

Reflections on Walkie-Talkie v3. Overall, using a VLM with
gaze-driven crops is a promising approach to resolving ambiguous
queries, as it balances accuracy, latency, and input data efficiency
for foundation models. Compared to an LLM paired with a separate
object detector (Walkie-Talkie v2), this method achieved higher ac-
curacy while maintaining a reasonable response time (𝑀𝑒𝑎𝑛=10.1s)
and reducing the need for video-based inputs. That said, with ad-
vancements in retrieval-augmented generation (RAG) [22, 23] and
real-time multimodal models (e.g., Google Gemini’s Multimodal Live
API [1]), our approach may serve as a stepping stone rather than a
final solution. Given the overhead of these emerging techniques—
including data storage, relevance filtering, and large-scale data
transmission—our crop-based approach provides a lightweight al-
ternative as foundation models continue to evolve.

6 Discussion and Conclusion
Walkie-Talkie explores the use of LLMs and VLMs to process longi-
tudinal natural gaze data for query disambiguation. Results from our
two-part VR study show that multimodal foundation models can en-
able more accurate, natural gaze-based interactions. AR evaluation
demonstrates Walkie-Talkie’s real-world feasibility, though chal-
lenges like over-predicting referents and misclassifications remain.
Below, we discuss future opportunities and areas for improvement.

Future of Always-Available AI Agents. Walkie-Talkie lever-
aged frozen multimodal foundation models, which performed sur-
prisingly well despite likely not being trained on gaze data. Its
performance could be further improved through fine-tuning [41]
or prompt-tuning [21]. To achieve this, a dataset capturing natural
gaze behavior, along with other human inputs like gestures and
speech, and ground truth intent, must be assembled, similar to
VOILA-A [40]. Additionally, future systems should explore whether
LLMs and VLMs can process other common human inputs, such
as hand gestures, to enhance interaction flexibility [10, 19]. More-
over, systems should support not only present and recent past
referents but also those from the distant past, enabling queries
like “Where did I leave my keys?”. Lastly, techniques like retrieval-
augmented generation (RAG) [22, 23] and real-time models (e.g.,
Gemini’s Multimodal Live API [1]) could help overcome these limi-
tations, enabling AI to retrieve relevant data from larger datasets,

eventually achieving life-logging [14]. As discussed earlier, the ap-
proach used in Walkie-Talkie v3 offers a lightweight alternative by
reducing existing overhead associated with data storage, selection,
and transmission—though, over time, advancements may make
these challenges less of a concern. Multimodal foundation models
on wearable XR devices could offer powerful capabilities but still
face unresolved technical and privacy challenges.

AI Explainability. As XR systems become increasingly AI-
driven, explainable AI (XAI) features are essential [39]. Feedback
from participants emphasized the need for transparency in how
Walkie-Talkie tracks gaze and generates answers (P7, P8, P11, P12,
PP1). Participants suggested Walkie-Talkie should provide visual
confirmation of gaze tracking accuracy (P7), vocalize explanations
alongside answers to help users understand erroneous responses
and adjust their gaze or rephrase queries (P11, PP1), and provide
multiple answer options, like a Google search result, for users to
choose from (P8, P12). Incorporating XAI features will enhance
trust and usability by making the AI’s decision-making process
more transparent.

Context-Aware Dialogue. Walkie-Talkie supports context-
aware dialogue, but token limitations restricted its ability to store
and use past data. Future work should look into expanding memory
capacity to enhance dialogue capabilities. For example, if the system
selects the wrong referent, users should be able to follow up with,
“No, I meant that one” (P12).

Usability and Gaze Behavior in Long-Term Use. We encour-
age researchers to conduct in-the-wild studies [32], allowing users
to integrate context-aware VAs into their daily lives without re-
searcher intervention. Such studies can provide deeper insights
into query formation, gaze behavior shifts, and overall system per-
formance in real-world settings. Additionally, we recommend com-
paring users’ gaze patterns with a wearable VA to their natural
gaze behavior without technological intervention. This can further
clarify how naturally users engage with gaze-based interactions
in these systems. At the same time, while longitudinal gaze data
enables more natural interactions, awareness of being tracked may
still influence behavior. That said, participants did not find this
uncomfortable (unlike with explicit gaze systems), and their gaze
adjustments may reflect a natural tendency to assist AI-based sys-
tems. Over time, as users grow accustomed to the system, these
adjustments may also become effortless, requiring little to no con-
scious adaptation.

We hope readers continue to explore the space of always-
available AI agents on wearable XR, particularly for ambiguous
question-answering.
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