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ABSTRACT

With advances in machine learning, autonomous agents are increasingly able to navigate uncertain operational
environments, as is the case within the multi-domain operations (MDO) paradigm. When teaming with humans,
autonomous agents may flexibly switch between passive bystander and active executor depending on the task
requirements and the actions being taken by partners (whether human or agent). In many tasks, it is possible
that a well-trained agent’s performance will exceed that of a human, in part because the agent’s performance
is less likely to degrade over time (e.g., due to fatigue). This potential difference in performance might lead to
complacency, which is a state defined by over-trust in automated systems. This paper investigates the effects of
complacency in human-agent teams, where agents and humans have the same capabilities in a simulated version
of the predator-prey pursuit task. We compare subjective measures of the human’s predisposition to complacency
and trust using various scales, and we validate their beliefs by quantifying complacency through various metrics
associated with the actions taken during the task with trained agents of varying reliability levels. By evaluating
the effect of complacency on performance, we can attribute a degree of variation in human performance in
this task to complacency. We can then account for an individual human’s complacency measure to customize
their agent teammates and human-in-the-loop requirements (either to minimize or compensate for the human’s
complacency) to optimize team performance.

Keywords: human-autonomy teaming, predator-prey pursuit, automation bias, automation complacency, group
dynamics, adaptive agents

1. INTRODUCTION

Warfighters are taught from indoctrination that “there’s no I in team.” Teams are organizations that employ
dynamic and adaptive behavior between individuals in order to achieve a common goal.1 For warfighters, good
team performance can be the difference between mission success and failure. With advances in computational
technologies, machine learning has allowed us to develop autonomous agents: non-living entities which have a
capacity to be intelligent and make their own decisions. Because of this, the fundamental structure of teaming
has changed – teams can now be comprised of a combination of human members and autonomous agents.2 With
automation and autonomy being ubiquitous in the 21st century, human-autonomy teams already exist not only
for specialized workers, but also in the ordinary person’s daily life (e.g., autonomous vehicles, content recom-
mendations, algorithmic decision-making systems), resulting in a growing need to study their interactions.3 In
turn, our service members increasingly rely on automation to complete missions, requiring effective computation
agents to be human-aware in order to behave like teammates rather than tools.4

With autonomy growing adaptive and cognisant of its operating environment, it can become complex and
unpredictable. This presents a challenge, as autonomy is currently unable to effectively communicate with its
team members without specialized and task-specific protocols,5 which falls outside of Salas et al.’s 3C model
of teamwork.6 Teamwork hinges upon team members being able to coordinate (e.g., adopt strategies based
on observations of partners’ behaviors), cooperate (e.g., optimize cohesion based on shared objectives), and
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communicate (e.g., provide feedback), and albeit the lack of communication does not imply the degradation of
teamwork, it may not be as effective as a team comprised entirely of humans.

Research has taken advantage of autonomy and computation in order to provide capabilities that match
or surpass their human teammates. As autonomous teammates evolve from being passive bystanders (e.g.,
recommender and decision support systems) to active executors of a task, it is possible that performance of
the agents grow to exceed the human’s, in part because the agent’s performance is less likely to degrade over
time.7 This potential difference might lead to complacency, which is a state defined by over-trust in automated
systems.8 A human might over-trust the capabilities of their autonomous teammates, resulting in reduced
situation awareness.9 Following the paradigm of social loafing (an under-researched area of Human-Autonomy
Teaming), is the effect of a human’s potential over-reliance toward autonomous teammates, and the complacency
that results from over-trust due to the system’s perceived reliability. Even with the capability of outperforming a
human, autonomous systems are still not flexible and intelligent enough to robustly handle all types of uncertainty
(at least not to the degree of a human). Therefore, humans must continue to remain “in the loop” regardless of
the immediate performance of their autonomous teammates.

In this paper, we propose a study with an experimental intervention that aims to demonstrate how the
reliability of the autonomous agent affects the motivation, trust, and performance of their human teammates.
Participants will play the team-based Predator-Prey game, where they team up with two autonomous agents
trying to capture an autonomous prey. We then establish the following hypotheses:

• H1: High autonomous teammate reliability leads to decreased human performance (i.e., complacency).

• H2: High autonomous teammate reliability leads to reduced motivation.

• H3: Human pre-disposition to complacency predicts observed performance, with a greater effect on low-
performing autonomous teammates.

2. BACKGROUND

2.1 Human-Autonomy Teaming (HAT)

Due to the rising ubiquity of computation and autonomy as well as the growing interest in team-based interactions
between human and machine, research in Human-Autonomy Teaming arose from the need to study behavior.
Teamwork is defined as the “array of interconnected behaviors, cognitions, and attitudes that make coordinated
and adaptive performance possible”.6 Traditionally, Salas et al. established the three-pronged approach to
teamwork based on communication, coordination, and cooperation.6 However, due to the automation’s current
growing abilities at following these requirements (e.g., communicating10), alternate approaches and their effects
on human behavior must be investigated as automation progresses to have capabilities akin to another human.

Research has identified the three main roles autonomous agents can play: individual support, team support,
or team member. Supporting roles have been largely researched in the context of passive and decision sup-
port systems, yet, agents as team members rely on a higher degree of specific interactions (e.g., predictability,
expectations, team knowledge) which provide difficult research challenges.11,12 In experimental approaches, au-
tonomous agents have the capability to exchange information, communicate (albeit in a limited fashion), and
verify and correct errors. Ideally, teams can be assisted in information retrieval, communication, monitoring,
and planning.13 However, in practice, due to the difficult rationalization and explainability of the autonomy,
humans often end up frustrated with the expected performance and interactions of their autonomous teammates,
leading to various performance issues such as tunnel vision, degraded situation awareness, and complacency.12

Applications of Human-Autonomy Teaming are already widely used in transportation (e.g., autonomous
cars), military operations (e.g., high-value targeting, reconnaissance), and flight operations and dispatching,12,14

to mention a few examples. Large advances are being made in developing software agents (e.g., decision support
systems) and embodied agents (e.g., physical robots) in a variety of different contexts; agents that should be
capable of understanding its and its team’s tasks and conduct effective interaction with its teammates (human
or otherwise).15 However, due to either implementation limitations and external factors, the performance of
autonomous agents can suffer, requiring a need not only to investigate how teams adapt to different levels of
performance reliabilities, but also if they even detect failures at all.



2.2 Complacency, Automation, and Performance Degradation

Interaction with automated and decision support systems is a fundamental research landscape for human fac-
tors, with much research showing that support from automation can change human activity in unpredictable
ways.8 Decision support systems have long existed to assist in the decision making process, and as they become
increasingly complex, they become difficult to predict and comprehend. While many designers respond by in-
creasing transparency and customizability, this has still been shown to lead to a state of over-trusting, resulting
in degradation of judgment16 and knowledge.17

Complacency is defined as a “psychological state characterized by a low index of suspicion”, possibly leading
to operators not checking the system state enough for safe or optimal operation, assuming that “all is well”.8

Researchers mostly associate complacency with tasks that require supervisory control, leading to hampered, and
even possibly fatal, human performance,9 mainly due to a reduced frequency of checks in whether the machine
is functioning correctly.18 However, complacency is not exclusive to automation that requires supervision;
autonomous agents have the capability of making a decision and executing without supervision. If the decision
is trusted without regard by the human operator, it can lead to complacency through degraded performance.

Various studies have investigated different ways of counteracting complacency, as it is one of the predominant
issues in automation.19 Bagheri and Jamieson investigated the effect of different levels of reliability over time on
failure detection20 and how transparency serves to mitigate its resulting complacency and performance loss.21

Salehi et al. used accountability in interactive control agents as a deterrent to complacency, with short term
gains but slowing the decision-making process.22 Bahner et al. suggest that training protocols can mitigate
complacency.23

With AI-powered automation and autonomy becoming ubiquitous, we must begin considering complacent
behavior in systems beyond monitoring-type interactions, as the role of autonomy evolves from being a passive
bystander (e.g., recommendations, suggestions) to active executor and team member, akin to how we would treat
and trust another human being.3

3. METHODOLOGY

In this section, we describe the methodology of the proposed study in detail. We aim to have participants play
the Predator-Prey game in order to measure behavioral complacency throughout the task. We manipulate the
reliability of the autonomous agents and measure the participant’s performance throughout the task.

3.1 Predator-Prey Game

Figure 1. Screenshot of the Predator-Prey Game. 3 predators (red dots) team up to capture a prey (blue dot).



The experimental tool to provide the task and measure participants’ performance is the Predator-Prey game
(Fig. 1). Originally a testbed24 to simulate and train machine learning models for cooperative asset (e.g.,
drones, tanks) maneuvers using OpenAI’s gym toolkit,25 we developed an environment in the Unity26 game
engine to allow human input and interaction. Participants are tasked with teaming up with two autonomous
agents (predators) to “capture” (i.e., collide with) a third autonomous agent (prey), which is constantly evading
in a continuous space. A continuous space serves to help our understanding on real-world pursuit tasks and
strategy formation, as opposed to a simplified, discrete space.24

The task environment is comprised of a closed square arena of 2 m∗ of width and 2 m of height. The players
in the Predator-Prey game move their circular avatar on a physics-based system by applying a force to their
agent. The force is applied by human players through a joystick in an Xbox One controller, which translates to
a vector. In order to give predators and prey an equal chance to succeed, as well as to encourage the emergence
of coordination among predators, the predators were made slower than the prey. The predators had a maximum
speed of 1 m/s and accelerated at a maximum rate of 3 m/s2. The prey had a maximum speed of 1.3 m/s
and accelerated at a maximum rate of 4 m/s2. The mass of the players was set at 1 kg. The diameter of the
players were 0.15 m and 0.1 m for predators and prey, respectively. Upon capture, the capturing predator and
prey would knock each other back at an impulse force of 1 m

kg·s until losing all momentum (by reducing the

absolute velocity at the rate of 0.25 m/s). Additionally, the prey is granted 0.5 seconds of invincibility after
being captured, such that subsequent captures are not recorded if they are bumped by multiple predators at the
same time.

The autonomous agents make decisions through a multi-agent deep deterministic policy gradient (MADDPG),
a decentralized actor-centralized critic reinforcement learning algorithm which accounts for each agent’s actions
when searching for an optimal policy to execute (Fig. 2). A policy gradient serves appropriately due to the
continuous action space of the Predator-Prey game.27

Figure 2. Overview of MADDPG’s structure: a decentralized actor, centralized critic approach (adapted from Lowe
et al.27). Policy π receives observations o (i.e., the state of the world) and outputs actions a (i.e., predator or prey
movement), and then assigned reward Q (i.e., rewarded when capturing). It learns to associate the reward with the given
action at that world state, building up the policy.

Figure 3 outlines the operational flow of the MADDPG algorithm. The algorithm itself is a neural network
which takes 12 observations from the environment for each predator and 10 inputs for the prey as input, and

∗Unity (or game engine) units are an arbitrary measure, but best practice is to equate it to an SI base unit.



Figure 3. Overview of the MADDPG operational flow. MADDPG takes observations from the environment, and outputs
the best actions according to its policy gradient. These actions are converted into behavior in the environment and
updates its state for new observations.

outputs 4 actions for each agent. The observations fed into the neural net are the X and Y position of the
current agent (2 inputs), the X and Y velocity of the current agent (2 inputs), the positional difference between
the current agent and all other agents per axis (adding 6 inputs), and the X and Y velocity of the prey (2
inputs, ignored if the agent is the prey as velocity has already been accounted for). The algorithm then outputs
4 values ranging from 0 to 1 inclusive for each agent: the X-positive force (right), the X-negative force (left),
the Y-positive force (up), and the Y-negative force (down). The actions are converted into a 2-dimensional force
vector in the environment and applied to the corresponding agent, culminating in its movement.

We trained the autonomous agents with an MADDPG algorithm to learn how to play the Predator-Prey
game through 200,000 episodes, with rewards assigned based on how many times a predator captured a prey
(reward for predators, penalty for prey). Reinforcement learning algorithms search for the optimal policy during
training, and in this scenario, an optimal policy is one such that a predator closes its distance to the prey, or
strategizes with other predators to do so. Because humans are asynchronous to the agents’ process and may act
freely of this constraint (i.e., they may move opposite of an optimal policy, or not move at all), policies tend to
fail whenever a member of the team behaves not according to the optimal policy (as the observation changes to
a point in the gradient which may have been unexplored).28 We attempted to counteract this issue by making
single or combinations of agents in the predator team inactive during certain training episodes, so predators
would learn to capture the prey without the intervention of the whole team, resulting in a model more robust
to error.

In order to manipulate the reliability of the autonomous predators during the Predator-Prey game, we
introduced noise according to condition to force errors in the model, as previous work has shown a relationship
between the quality of observations and interdependence between agents’ actions.29 The agents’ observations
were perturbed with random values according to a logistic distribution. A logistic distribution gives us more
values from the tails in comparison to a normal distribution, due to its higher kurtosis. The parameters were
chosen arbitrarily and verified visually by interacting with the resulting agents. This allows a low, but reasonable
percentage (logistic distribution with µ = 0, s = 0.03, peturbation SD = 0.054414) of the observations to fall
outside the model’s expectations, leading the agents to occasionally behave erratically before recovering to the
optimal policy.



To validate both the robust model (i.e., resistant to agent inactivity) and the noisy model (i.e., low reliability),
we conducted a Kolmogorov–Smirnov (KS) test to justify 2 assertions: a) replacing the original model with
our robust model would not cause changes in the observed complacent behavior by demonstrating they have
congruent performance, and b) the different reliability models empirically perform differently, thus changes in
the observed complacency behavior could possibly be attributed to the difference in reliability. Each trained
model (original, robust, and noisy) was run for 50,000 episodes in testing (i.e., not learning any policies), and
collected a distribution of their number of captures. A KS test found significant differences in both comparative
distributions (original vs. robust: D = 0.014, p < 0.001; robust vs. noisy: D = 0.0278, p < 0.001). While this
test does not support assertion a, we do find that the effect size for this contrast is less than half of that for
assertion b. Further, in 70% of the episodes, the predators never captured the prey, providing a large amount
of data and increasing the power of the KS test to find significant differences. In light of this, we conducted an
additional KS test where we excluded episodes with 0 captures in the analysis. Figure 4 outlines the empirical
cumulative distribution functions for the number of captures of the three models. For assertion a, the KS test
found no significant difference in captures between the original and robust models (D = 0.008, p = 0.68), thus it
is replaceable to account for unwanted human behavior. For assertion b, the KS test found significant difference
in captures between the robust and noisy models (D = 0.078, p < 0.001), thus observed behavior during the
intervention can be attributed to the difference in reliability. These results were replicated with a Zero-Inflated
Poisson Regression, which validates both assertion a (original vs. robust: b = 0.005, p = 0.507, difference in
log-likelihood with null model: 10.7, p < 0.001) and b (robust vs. noisy: b = -0.125, p < 0.001, difference in
log-likelihood with null model: 127.06, p < 0.001). As per our expectations, the original and robust model did
not have a significant difference, whereas the noisy model differed from the robust model.

Figure 4. Empirical cumulative distribution functions (ECDFs) for the original, robust, and noisy MADDPG models.
Episodes with 0 captures were dropped from the model due to zero-inflation.

3.2 Experimental Design

The Predator-Prey game was designed to simulate the interactions between operators engaged in a pursuit-
evasion task. This task sets predators and prey with competing, mutually exclusive goals, where the result of the
task highly depends on the collaborative and individual performances of each entity. Models of predator-prey
pursuit behavior are useful for identifying coordination strategies, and they serve as an intuitive and archetypal
collaboration task for participants.30



Participants are tasked to play 20 rounds of the Predator-Prey game for 30 seconds each. As mentioned
in section 3.1, the participant takes on the role of a predator, assisted by 2 autonomous teammates to capture
an autonomous prey. Participants are allowed 2 practice rounds before the actual recorded runs begin. All
predators begin at least 0.5 m away from the prey, as to not provide any advantageous position to either team
(i.e., predators will not begin by cornering the prey).

Before and after the intervention, participants completed a battery of questions to measure various subjec-
tive characteristics pertaining to technology and automation. These questions consisted of validated scales to
measure motivation, complacency potential, trust propensity, perception of trust, and perceived workload. The
inclusion of these scales serves an exploratory purpose to find a relationship between personal characteristics
and performance with respect to the experimental intervention (i.e., autonomous agent’s performance). Surveys
were modified and adapted to measure the criteria of interest. Figure 5 outlines the proposed experimental flow
in 5 stages. Table 1 outlines the order of the surveys before and after intervention.

Figure 5. Proposed experimental flow.

An a priori power analysis was conducted and indicates that given a significance level α of 0.05, the required
sample size n for a demonstrable effect is either 128 (false negative probability β = 0.2, effect size f = 0.25) or
84 (false negative probability β = 0.05, effect size f = 0.4).

The independent variable of interest is the reliability of the agent: high or low. The reliability was persistent
throughout the entire experiment and was manipulated between-subjects.

3.3 Measures

3.3.1 Behavioral Observations

An eye tracker will be used to capture the participants’ focus and fixation points throughout the trials. Gaze
metrics have been widely used to study cognition in multiple studies, revealing insights in how humans acquire
domain knowledge and complete tasks.31 Throughout the task, multiple potential focal points exist, such as the
participant’s avatar, the prey, and the central point of a polygon with each player in the game as its vertices.
The frequency of gazing these areas of interest will serve as the quantification of attention and provide insight
into complacent behavior.

Individual participant performance and team performance will be recorded, quantified by the amount of
captures the predators achieve. Performance is the main dependent variable analogous to mission success in
real-life scenarios. All positional, input, and eye tracking data will be retained for replay and re-simulation. This
results in multiple time series which can be subject to time series analysis for insight on team-based behavior.
The data points are sampled at 60 Hz.

3.3.2 Surveys

The Intrinsic Motivation Inventory (IMI) presents a 22 item version which focuses on task evaluation, measuring
interest and enjoyment, perceived choice, perceived competence, and pressure and tension.32 Designed to be
reworded to contextualize the inventory for the task, questions were modified to make them relevant to the
Predator-Prey game (e.g., “I felt pretty skilled when cooperating with others” instead of “I felt pretty skilled at
this task”). The IMI was given before and after the intervention to measure changes in motivation, which has
been known to accurately predict performance and engagement in game-based tasks.33



The Automation-induced Complacency Potential (AICP) scale measures a participant’s tendency toward
sub-optimal monitoring patterns through 2 factors: workload alleviation and frequency of monitoring.34 The
AICP was given before the intervention, and it should relate to their propensity to trust autonomy and their
perceived trust of the autonomous teammates. Although the AICP measures complacency through automation,
there is no scale for interaction with autonomous agents, and thus it serves as an initial point of data collection
and inference.

The adapted Propensity to Trust Technology (aPTT) scale measures a participant’s general tendency to trust
technology, and it was modified in this study by including language that specifically referred to “automated
agents” rather than technology.35 According to Jessup et al., using the specific language of “automated agents”
allows the measure to predict behavioral trust. This is a measure of trust before the participant interacts with
the autonomous agents.

The Trust in Automated Systems (TAS) scale measures how trustworthy the participants perceived the
system that they just interacted with – in our case, the autonomous teammates36 – to be. The questions in this
scale were rephrased with the autonomous teammates as the object of reference. We predict the observed trust
measured by this scale to be related to the previous aPTT.

The NASA Task Load Index (NASA-TLX) is a widely-used and strongly validated tool to measure perceived
workload throughout a task.37 Since complacency might relate to the amount of workload a participant perceives,
we expect to find a correlation between agent reliability and perceived workload. Additionally, any variance
demonstrated from predicting complacent behavior using reliability could be clarified using workload.

All survey items are detailed in Appendix A.

Table 1. Surveys and measurements utilized before and after interventions.

Before Intervention After Intervention
IMI (Ryan and Deci, 1982) IMI (Ryan and Deci, 1982)
AICP (Merritt et al., 2019) TAS (Jian et al., 2000)
aPTT (Jessup et al., 2019) NASA-TLX (Hart and Staveland, 1988)

4. DISCUSSION

The goal of this work is to facilitate the development and design of autonomous agents by providing insight
on the effect of agent reliability on the performance of their human teammates. We approach this with three
hypotheses, reiterated below.

• H1: High autonomous teammate performance leads to decreased human performance (i.e., complacency).

• H2: High autonomous teammate performance leads to reduced motivation.

• H3: Human pre-disposition to complacency predicts observed performance, with a greater effect on low-
performing autonomous teammates.

With rapid advances in the capabilities of autonomous agents and their ability to mimic human behavior and
surpass performance, there is a need to investigate the limits of human cooperation with autonomy, with the
aim of allowing intuitive teamwork between them.

We use task performance (i.e., team and individual captures) as our main affected metric by agent reliability.
We hypothesize that as the agent is more reliable and skillful, human operators begin offloading their cognitive
efforts to the automation, resulting in reduced performance and/or increased complacency throughout the task.
H1 is tested by using task performance as a metric; we can conduct a t-test or Mann-Whitney test based
on normality to establish significant differences between participant performance interacting with reliable or
unreliable agents.

The battery of questions before and after intervention serve to answer H2 and H3. The IMI is given before
and after the intervention, and our sub-scales of interest are interest/enjoyment (as a metric of intrinsic moti-
vation), and pressure/tension (analogous to complacency and perceived workload). With aggregated scores and



a Wilcoxon test (due to its ordinality and paired data points before and after intervention), it should indicate
any changes in motivation after interacting with the autonomous agents. We expect to see greater drops in
motivation in the low-reliability condition than in the high-reliability condition, per H2.

The AICP and aPTT are predictors of complacent behavior and trust, measured in the intervention by the
Predator-Prey game and the TAS, respectively. Intuitively, a person who is more likely to be complacent and has
a high level of trust in automation will show a higher degree of behavioral complacency (i.e., lower performance
in the Predator-Prey game). Thus, we expect (per H3) that predisposition to complacency predicts performance
in a team with autonomous teammates, with a higher degree of accuracy if the teammates are unreliable. This
hypothesis will be tested with a multiple linear regression or a generalized linear model with AICP and aPTT
as predictors, and TAS as a co-variate. Additionally, a mixed model using reliability as a fixed effect and
participants’ subjective tendencies as a random effect may help us to model the observed performance’s variance
more clearly.

Eye-tracking data has long been used in human factors to record focus points and fixations,31 and it can reveal
attention allocation and strategies throughout the Predator-Prey game. Ideally, a participant’s gaze should follow
a trajectory between their own controlled predator and the prey, with occasional glances to the general vicinity
of the autonomous teammates and the status of the task (i.e., the capture count and the timer). A complacent
participant would instead disengage from the task, and their gaze would have degraded and delayed tracking
to the object of interest (i.e., the prey). The reduced frequency of monitoring the behavior of the autonomous
teammates would serve as the quantification of complacent behavior.

For an agent to identify and participate in a non-explicit strategy initiated by a human teammate, they must
be able to detect different strategies from observable data. Ultimately, the aim is to allow intuitive interactions
between humans and autonomy, and in the case of continuous task spaces, agents should be able to adapt to
strategies bottom-up (i.e., recognizing units of behavior as part of a larger strategy), while preventing performance
degradation in their human teammates. This is important because, while strategies can be implemented top-
down (i.e., declared conceptually, then implementing the small behaviors), they are often fluid, implicit, and
emergent. Recent work has demonstrated that univariate time series methods can be used to detect ground-
truth changes in strategy (as defined by agent policy) from summaries of an all-agent team’s spatial positions.30

Positional data from the Predator-Prey game can allow a first attempt at identifying group strategies between
humans and autonomous agents in a team-based task.

In the context of artificial intelligence and machine learning development, a central issue which remains is
the understandability of the final behavior of a trained autonomous agent. With respect to our implementation,
neural networks are inherently “black boxes”, and thus the internal representations of the environments and
policies it holds cannot be known. As this affects understanding of the behavior, it can be difficult to detect
when autonomy is engaging in cooperative behavior. To this avenue, recent work has explored using convergent
cross mapping38 and ergodic spatial distributions39 in order to gain insight of the behavior between heterogeneous
teams and establish whether they are actively cooperating versus working independently but with a shared goal.

A novel approach to automation complacency in multi-agent systems would be to view it from the lens of
social loafing.40 Social loafing is formally defined as the “reduction in motivation and effort when individuals
work collectively compared with when they work individually or coactively”.41 Performance degradation due to
complacency serves akin to the penalties incurred due to social loafing, as the human does not need to invest
as much effort in the task due to the perceived ability of the autonomous agents. Disengagement from the task
is ultimately an example of team cognition degrading, due to the influence of the autonomous agents to their
human counterparts. A future avenue of work possibly entails adapting solutions to social loafing to the domain
of HAT and quantifying their effectiveness.

4.1 Limitations

This proposal provides a step forward in investigating complacency and performance to design effective au-
tonomous teammates, however, many challenges remain. The Predator-Prey game only represents a single task
in a wide variety of team-based continuous tasks that may represent the real world. Modifying goal conditions,
simulation parameters such as number of teammates or agent velocities, or the environment itself can yield a



different scenario where generalization of performance becomes challenging. However, it serves as a starting point
for the effects of complacency on performance in multi-domain operations, particularly when the environment
can be uncertain.

Complacency still remains loosely defined in practice, beyond attempts to provide an empirical model for its
measurement based on attention sampling.18 Although complacency is defined by task, the commonality between
the definitions lie between monitoring the automation and demonstrated task performance. We predict in this
study that demonstrated performance and the frequency in which the autonomous teammates are monitored are
a proxy for complacent behavior.

Investigating automation reliability in a multi-agent continuous task is a novel approach to the human-
autonomy teaming research, and although we have framed demonstrated task performance and related co-variates
in terms of complacency, the possibility remains that other extraneous factors describe our results instead. The
variance of our resulting generalized linear model should indicate performance not explained by agent reliability
or any of the subjective predispositions to complacent behavior.

APPENDIX A. SURVEYS AND QUESTIONNAIRES

The following are the used surveys before and after the intervention. Items denoted with R are reverse scored.

A.1 Intrinsic Motivation Inventory (Ryan and Deci 1982)

Interest/enjoyment: 1, 5, 8, 10, 14 (R), 17, 20
Perceived competence: 4, 7, 12, 16, 22
Perceived choice: 3, 11 (R), 15, 19 (R), 21 (R)
Pressure/tension: 2 (R), 6, 9 (R), 13, 18

1. While I was cooperating with AI I was thinking about how much I enjoyed it.

2. I did not feel nervous at all about doing cooperating with AI.

3. I felt that it was my choice to cooperate with AI.

4. I think I am pretty good at tasks that involve cooperating with AI.

5. I find cooperating with AI very interesting.

6. I feel tense while cooperating with AI.

7. I think I did pretty well at cooperating with AI, compared to others.

8. Cooperating with AI is fun.

9. I feel relaxed while cooperating with AI.

10. I enjoy cooperating with AI very much.

11. I don’t really have a choice when cooperating with AI.

12. I am satisfied with cooperating with AI.

13. I am anxious when cooperating with AI.

14. I think cooperating with AI is very boring.

15. I feel like doing what I want to do while I cooperate with AI.

16. I feel pretty skilled when cooperating with AI.

17. I think cooperating with AI is very interesting.



18. I feel pressured while cooperating with AI.

19. I feel like I have to cooperate with AI.

20. I would describe cooperating with AI as very enjoyable.

21. I cooperate with AI because I have no choice.

22. After cooperating with AI for awhile, I feel pretty competent.

A.2 Automation-induced Complacency Potential Scale (Merrill et al. 2019)

Alleviating workload: 1, 2, 3, 4, 6
Monitoring: 5 (R), 7, 8 (R), 9, 10

1. When I have a lot to do, it makes sense to delegate a task to automation.

2. If life were busy, I would let an automated system handle some tasks for me.

3. Automation should be used to ease people’s workload.

4. If automation is available to help me with something, it makes sense for me to pay more attention to my
other tasks.

5. Even if an automated aid can help me with a task, I should pay attention to its performance.

6. Distractions and interruptions are less of a problem for me when I have an automated system to cover
some of the work.

7. Constantly monitoring an automated system’s performance is a waste of time.

8. Even when I have a lot to do, I am likely to watch automation carefully for errors.

9. It’s not usually necessary to pay much attention to automation when it is running.

10. Carefully watching automation takes time away from more important or interesting things.

A.3 Adapted Propensity to Trust in Technology (Jessup et al. 2019, original: Schneider
et al. 2017)

1. Generally, I trust automated agents.

2. Automated agents help me solve many problems.

3. I think it’s a good idea to rely on automated agents for help.

4. I don’t trust the information I get from automated agents. (R)

5. Automated agents are reliable.

6. I rely on automated agents.



A.4 Trust in Automated Systems (Jian et al. 2000)

1. The agent is deceptive. (R)

2. The agent behaves in an underhanded manner. (R)

3. I am suspicious of the agent’s intent, action, or outputs. (R)

4. I am wary of the agent. (R)

5. The agent’s actions will have a harmful or injurious outcome. (R)

6. I am confident in the agent.

7. The agent provides security.

8. The agent has integrity.

9. The agent is dependable.

10. The agent is reliable.

11. I can trust the agent.

12. I am familiar with the agent.
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